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The method known in the theory of linear oscillations for analyzing degenerate 

dynamic systems is used here for establishing particular cases of spherical motion 
of a heavy gyrostat in a three-dimensional pseudo-Euclidean space for which 

exists a linear invariant of equations of motion. 

The problem of spherical motion of a solid body with cavity completely filled 

by a homogeneous incompressible fluid was considered by Joukowski [l]. Poin- 
care [S] established the interrelationship between the problem of finding supple- 

mentary integrals of the Hamiltonian system and the degeneration phenomenon 

similar to that of the degeneration of the resonance kind in linear oscillations. 

His idea is used in [3, 41 for interpreting particular cases of spherical motion of 
a heavy solid body for which Euler’s dynamic equations have a linear invariant. 
This idea is based on the argument that small oscillations of a solid body in the 
neighborhood of its stable equilibrium position may be defined by the first terms 

of expansion of integrals of Euler’s nonlinear dynamic equations. In that case the 
initial conditions must not contain restrictions which exclude small oscillations 

of the solid body in the neighborhood of that position. It is shown in [Z] that re- 
sonance at small oscillations of a system of linked oscillators indicates the pos- 

sibility of existence of supplementary integrals of its dynamic equations. With 

certain restrictions imposed on the geometry of the body mass and on initial pa- 

rameters , the supplementary integrals of the linear problem of small oscillations 

may simultaneously be the integrals of Euler’s nonlinear dynamic equations. 
The described above method is extended here to the spherical motion of a 

gyrostat in a uniform gravity field of the pseudo-Euclidean space ‘I?, whose 

metric tensor gij = ei -ej has the components g,, = g,, = - ‘i. gss = 1 and 

gij = 0 for i # j , where ei are unit vectors of some basic reference point of the 

considered space (+) . In what follows the definition of a gyrostat in a pseudo- 
Euclidean space IRS is that of a gyrostat located inside an isotropic cone of that 

space, and the vertex of that cone being the fixed point 0 . The radius vectors 
of the gyrostat points are in this case eigenvectors. Concepts of the kinetic mo- 
ment and of moments of inertia of a solid body about nonisotropic axes, and ana- 

logs of Euler’s angles were introduced in [S, ‘I] on the assumption of the validity 
of fundamental axioms of classical dynamics in the pseudo-Euclidean space ( **) . 

*) The notation 1~,, was introduced by Rozenfel’d [5]. 
**) See also Kosogliad, E. I. , Dn the dynamics of a solid body in a pseudo-Euclidean 
space and in the tobacevski plane. Dissertation, Kazan’ Univ. , 1970. 
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2, Assuming the validity of axioms and principles of classical dynamics in the pseudo- 
Euclidean space ‘Es we obtain analogs of Joukowski’s equations [l] for a gyrostat in the 
axes of basic frame of reference S (0, z, y, z) of that space with the basis e,, eV, e,, 

where the I- and y-axes are imaginary and z is the eigenaxis. 

Let 
G=I-o+h, g=gY, l=M re 

where G and h are, respectively, the kinetic moment of the gyrostat and the hydrostatic 
moment relative to point 0 (h = const in 8); I is the inertia tensor of the body trans- 

formed according to Joukowski, constructed for point 0 whose principal components are 

A, B and C; w (P, 9, r) is the i~~tane~s absolute angular velocity of the basic 

frame of referenoe,S; y is the direction unit vector of the uniform gravity force field of 

intensity g, and M and rC are the mass and the radius vector of the gyrostat mass. 

We use the representation 

G = (4 + L)ez + (&z -t S)ev - (Cr + h,) e, 

and apply the theorem about the variation of the gyrostat kinetic moment relative to 

point 0. Using the definition of the vector product of vectors in space I&s given in 

[?‘I, we obtain 
AP’ 4 (c + @7F + A,9 + hr = ky, - hiYz 

Bq’ - (A + C)rp - il,t - h,p = Ly, - l,y, 

Cr’ - (B - Alpq - %,P -I- Lq = 4,~ x - by, 

The Poisson equations are of the form [7] 

(1. D 

Yx * = QYz - ‘yw yg’ = q”x - pyz, yz’ = 4Ya - PYU (1.2) 

with y2 = --yXs - yvs + yz2 = X, where x = 1, -1, 0 when the gravity force 
vector is either an eigenvector, or an imaginary or isotropic vector, respectively. We 

specify conditions 
y,=h,=o (1.3) 

The stable equilibrium position of the transformed body with condition (1.3) in the 

specified field is defmed by formula 

Y1J 
0 = 0, L,y,” - t,y; = 0, t,yzo - &YrD = I CL@ 

rz= 2.-z% e % C 

Henceforth the gyrostat parameters related to the specified position will be defined 

by a zero superscript, 
Let p, q and r be quantities of the first order of smallness and the unit vector y to 

differ slightly from y”. The linearized system (1.1) with conditions (1.3) and (1.4) then 
assumes the form 

p” f a,,p + alg == 0, q” + a2,q = 0 cLf9 

r” + a,g + ag3r = 0 
a,, = A-I (B-%,2 + Z,yz”), aI9 = A-’ (B-%&, - I,y;) 
n 22 = B-= (C-‘3Lx2 + A-+hz2 + I) 
a,, = C-l (B-lh,h, - Z2y~), as3 = C-l (B-‘lL,’ + Z,yF) 

fQIZ -t Q2 # 01 

System (2.5) can be taken as representing the first (linear) approximation equations 
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in the initial point neighborhood. 
Let us assume that in the lfis space vectors L and y” are collinear. Then rz+a. = 

a,,a8a, which is equivalent to the condition 

The linear transformation 

p=- ad + w-, Q = q, R = allp + a13r 

according to condition (1.6) transforms system (1.5) to the following: 

P” = 0, Q” + coz2Q = 0, R” + a,2R = 0 

*2 
2_ 

- a227 "s 
2_ 

- a11 + %I3 

(1.7) 

(1.8) 

Equations (1.8) are of the form of equations for longitudinal oscillations of linked 

oscillators with principal frequencies q=O, a2 and _J~ [8, 91. Note that degeneration 
of a similar character occurs in the problem of torsional oscillations of a shaft with ri- 

gidly mounted disks [lo] (see also [ll]) . 
Let us now consider the phase representation of motion. Note that the linear transfor- 

mation (1.7) does not alter the topological structure of the phase plane. Equations (1.8) 
imply that the representing point in the phase plane E, TJ of space ‘R, moves along 
the elliptic circumference 

Es + + = 0s 

Henceforth the zero subscript denotes parameters at t = 0. 
Let us consider the integral P’ = 0 which follows from the first equation of system 

(1.8), in which in accordance with the linearized system (1.1) and conditions (1.3), (1.4) 

and (1.6). It follows directly from conditions (1.4) and (1.6) that 

h,l, + ?b,l, = 0 (1.9) 

This condition defines the collinearity of vectors 1) and 1 in the space lR,. Thus, if 

vectors a and y” are collinear and conditions (1.3) and (1.4) are satisfied, vectors 1, 
and I are also collinear. Condition (1.9) is one of the relationships that define the gyro- 

static analog of the Hesse-Appelrot case in the space IRS. 
The integral P’ = 0 yields for Eqs. (1.5) the invariant 

--aarP + ellr = m (1.10) 

where m is the constant of integration. This corresponds to the statement that the linear 

invariant of system (1.5) exists when the characteristic equation 

vs - (0s + O&s + OsOsY = 0 

of the latter has the root or = 0 [12]. 
Let us derive the condition for which together with the stipulated assumptions the linear 

invariant (1.10) of the linearized system (1.5) is also the invariant of the nonlinear sys- 
tem (1. 1). Taking into account (1.9) from the condition P' = 0 , for Eqs. (1. 1) we ob- 
tain 

[A (R - A)u,,p + C (C + R)a,dq = ’ (1.11) 
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Formula (1.11) (with conditions (1.3)) represents a particular case of equations of 
the Staude cone in the ll?s space, whose generatrices are the axes of permanent rotations 
of the heavy gyrostat. 

If p (t) # 0, the invariant (1.10) with condition (1.11) can be represented in the form 

L4 (B - A)a,,2 + c (C + B)a,,21p = co11st 

or, if we exclude the case p (t) = con&, by 

c (B - A)(hz2 + BZ,y,0)2 + A (C + B)@Jv, - BZ,.,0)2 = 0 

hence, in accordance with (1.9), we have 

C (B - A)zc2 + A (C 4 B)zc2 = 0 (1. 12) 

This condition, together with the constraint ye = 0 (1.3), is the analog of the Hesse- 

AppeIrot case of a solid body in the iR, space [13]. Note that when conditions (1.12) 
and (1.9) are satisfied, m = 0. Hence the invariant (1.10) assumes the form [13] 

Ax,p + CZJ = 0 (1.13) 

If xCz, # 0, formula (1.12) by virtue of condition (1.9) yields 

C (B - A)lvz2 + A (C + B)hx2 = 0 (1. 14) 

Formulas (1.12) and (1.14) show that vectors r, and h are orthogonal to the circular 

cross section of the ellipsoid of inertia of the transformed body at point 0. Here A > 
B and,when A = B or z, = ?L, = 0, then x, = h, = 0; if X, = A, = 0, then 

either A = B, or z, = h, = 0. 

2, Let us consider the case of development of resonance 

ws = 02 (2.1) 

in a system of linked oscillators defined by Eqs. (1.8). 

Formulas (1.12) and (1.14) follow directly from this, and a resonance that satisfies 
condition (2.1) is defined by a relationship which is independent of components h 3c and 
AZ. This is apparent in equalities (1.12) and 1.13). 

Note. The above statement can be directly obtained from Eqs. (1.1) without the use 
of the related linear system. Let 

- a,p i- azr = 0 (a12 + (1.22 # 0) (2.2) 

be the invariant of system (1.1) with conditions (1.3), where a, and a2 are some constant 
coefficients. Thus, if condition 

Aa,& + Ca,b = 0 (2.3) 

is satisfied, then, excluding p = const (or r = const), in accordance with Eqs. (1.1) for 

Y # 0 we obtain conditions A (B - A)az2 + c (6’ + B)a,’ = 0 (2.4) 

nn2kX - CG, = 0 (2.5) 

Thus condition (2.4) of existence of the linear invariant (2.2) of system (1.1) obtained 
with restrictions (1.3) and (2.3) is independent of components h, and AL. If it is now sti- 
pulated that formula (2.2) must simultaneously be an invariant also for system (1.5) , 
we obtain as a corollary al = tlgl: g2 = all, and conditions (2.4) and (2.5) coincide with 
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formulas (1.12) and (1.9). 
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3. Let there exist the integral 
r (t) = r. (3.1) 

For system (1.5) this integral exists for c(si = asa = 0, which corresponds to condi- 

tions 
h, = (-Blry:)1’2 A, zz -(-Bl,y;>l’Z (3.2) 

It follows from formulas (3.2) that, when h 3i and 3L3 are nonzero, then in accordance 
with (1.4) 5, < 0, and z, > 0 for yZo ( 0 and z, < 0 for yZo > 0. The condi- 
tions of existence of the integral (3.1) for system (1.5) are identically satisfied for 

h, = xe = 0. These relationships together with (1.3) constitute an incomplete system 
of symmetrization conditions of the Lagrange kind. 

If the quantities A, = a11032 and AZ = al+$ are nonzero, there exists the unique 
transformation 

p = (- a,,P + a,,R)A,-I, r = (a,$’ + a&)A,-1 (3.3) 

inverse of transformation (1.7). If, however, A~ = A, = 0, then either a,, = aI3 = 0 or 
os = 0 , and a,, and uls are nonzero. In the first case components &and % must satisfy 

conditions (3.2) and in the second the condition 

A (LX2 + B&y,‘) + c (A,’ + B&“) = 0 (3.4) 

From formula (3.4) with conditions (1.4) and (1.9) we obtain 

dxc2 + CZ,” = 0 

hence Z~ = zc = 0. This means that gyrostat center of mass is situated on the isotropic 
cone. Since we consider here only gyrostat motions inside the isotropic cone, we con- 
clude that the second case is not possible because of adopted assumptions. Consequently 
there is no linear invariant of system (1.5) of the form 

allp + a13r = const 

which corresponds to o3 = 0. 
Thus, if A1 and As are nonzero, formulas (1.7) and (3.3) determine the homeomor- 

phism in the neighborhood of the transformed body equilibrium position. 

Let Z, = h, = 0. Then for q # 0 either p (t) = 0 or A = B, and the integral 
(3.1) of system (1.5) is also the integral of system (1.1). The latter of these cases to- 
gether with conditions (1.3) defines the gyroscopic analog of the Lagrange kind in the 

space 1Rs. Structural conditions for this case can be obtained from the resonance for- 

mula (2.1). 
Let now 2, = q (t) = 0; then (3.1) is the integral of system (1. l), and 

p’ = ky,, p = f-l (Zzyx - brO) (3.5) 

k = A-%, f = hz + (A -I- C)ro # 0 

Differentiating the last equality with respect to t with allowance for the first of Eqs. 
(1.2) and comparing the result with formula (3.5) for p’, we obtain 

h, + (2A + C)r, = 0 (3.6) 

Cases of degeneration when z, = 0 or yU = 0 are not considered here. Note that 
the structural condition 2A = C, which together with previous conditions defines the 
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Bobylev-Steklov case (in the Robylev form) for the Euclidean space [14], is not contained in 

(3.6). The gyrostatic analog of that case can be, however, found in the space ‘&‘a. 

In the considered case system (1.1) has in addition to the integral (3.1) the integrals 
of energy and area 

Ape + Cr,’ -+- 22,-p_ = h 

(4 + L-)y, + (Cr, 4 &)y, = .f.? 

where h and N are constants of integration. Substituting in the area integral the ex- 

pressions for y X and yz from Eq. (3.5) and the energy integral, we obtain a formula which 

becomes an identity when two independent conditions are satisfied. One of these is ex- 

pressed by (3.6) and the other is of the form 

hxZro = Wl, f Ar, (h - Cro2) (3.7) 

Substituting into the trivial integral ye = 3c the expressions for yr and \T_ and taking 
into account condition (3,6), we obtain 

Yr? = (21,)-21(h - 0,” - dp2)% - 4 (Ap - hxj2r02 - 4~1~~1 (3.8) 

Equations (3.5) and the energy integral yield 

yX = (A@-+, @, - Ap), yz = a - (%)-1~2 (3.9) 

where a,is determined by condition (3.7) and s is the variable of integration, 

Formulas (3.8) and (3.9) can be interpreted in the Lobachevski plane using the Bel- 

trami-Klein projective model, as was done in [7]. Such ~~rpretation is poasib1e.m the 
case when all points of the reduced body lie in one of the sheets of the real radius sphere 
of the space r_l?s. 
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Results obtained in [l] are extended to nonautonomous systems and a wider class 
of nonlinearities. The question of application of the Liapunov vector function is 

considered. 

1. Let us consider the system of differential equations of perturbed motion 

y’ = Q (t) x + R 0) Y + y” (h Y> + y (6 x7 Y) (1.1) 

x’= ~(t)x+X(t, x, y), XER’~ YER’ 
where P, Q and R are continuous and bounded for t > 0 matrices of corresponding 
order and functions Y, and X satisfy conditions 

Y(t, 0, y)=O, X(4 0, y)=O (1.2) 

IIY(~~x~~~Il+IIX(t~x~ Y)II -0 
II x II 

for jlxll+[lyjl-tO 
-4 (1.3) 
t>o 

We assume that solutions of the linear system 

satisfy the condition 
x*’ = P(t)x* (1.4) 

[I X* (t; to, x0*) 116 B 11 x0* 11 e-a(*-~o) (R > 0, u > 0-const ; i > to > 0) (1,5) 

Let us consider the system 

y*’ = R(t) y* + Y” (t, y*) (1.6) 

which is obtained from the first group of Eqs. (1.1) for x = 0 whose solutions are deno- 
ted by y* (t; to, yo*). The variational equations for system (l.S)are of the form 


